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Eagle6 is a modeling and 
simulation tool that is capable 
of predicting system behavior.

Ensure Changes to System 
Architecture Do Not Cause 
Unintended System Behavior

Validates Architectural Designs 
That Mix Legacy Systems and New 
Technologies

Evaluates Business Process 
Reengineering Designs   (Lean Six 
Sigma)

Question: “I have a great idea, but 
what happens if I change my 
system architecture?”

Answer: Test BEFORE You Invest!
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Problem: What could happen if I upgrade/change this system?

Coming Up: How we solve this problem…
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“System Architecture Designs May Contain 
Unintended and/or Unknown System Behavior.”

6



7

Typical difficulties

Users initial concept of system is nebulous 
Users description of system is incomplete and inconsistent 
Users (usually) don't understand what they really need 
Interpreting users description of problem is error-prone
Perception of system changes during analysis, requires reworking 
Different users will view the system differently

Question: How do we know if the system architecture represents all system 
requirements?
Answer: Model Checking



Major goal of software engineers
◦ Develop reliable systems
Formal Methods
◦ Mathematical languages, techniques and tools
◦ Used to specify and verify systems
◦ Goal: Help engineers construct more reliable 

systems
A mean to examine the entire state space of a 
design (whether hardware or software)
◦ Establish a correctness or safety property that is 

true for all possible inputs
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Past years of the formal methods
◦ Obscure notation
◦ Non-scalable techniques
◦ Inadequate tool support
◦ Hard to use tools
◦ Very few case studies
◦ Not convincing for practitioners

Bottom Line: It’s not easy.
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Key Goal: Find Unknown or Unintended System 
Behavior

Architecture Verification via Exhaustive Scope 
Testing

Traditional 
Testing

Testing: A few cases of arbitrary size

Eagle6 Exhaustive 
Testing

Scope Complete: All cases within scope

3
2

Scope
1

Unknown (Unintended) System Behavior

Known System Behavior
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Pros
Great for system safety 
testing.
◦ Medical Systems
◦ Weapon Systems

Great for finding 
unknown system 
behavior and/or 
architectural design 
flaws (assertion 
checking)

Cons
Modeling languages 
are very complex and 
require domain 
expertise

Models require a very 
long time to develop

Modifying models is 
not easy, making reuse 
very difficult
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Your Text

Your Text

Your Text

Your Text

Using a single 
model allows for 
system constraints 
to remain resident 
throughout all 
stages of the 
system lifecycle.

Your Text

Requirements Testing

Conformance Testing

Functional Testing

Integration Testing

Black Box Testing

Performance Testing

Regression Testing

System Testing

Unit Testing
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Formal methods can be applied at various 
points through the development process
◦ Specification
◦ Verification
Specification: Give a description of the system 
to be developed, and its properties
Verification: Prove or disprove the correctness 
of a system with respect to the formal 
specification or property 
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Problem: What could happen if I upgrade/change this system?

Answer: Model the solution and test, test, test!
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Your Text

Your Text

Your Text

Your Text

Using a single 
model allows for 
system constraints 
to remain resident 
throughout all 
stages of the 
system lifecycle.

Your Text

Requirements Testing

Conformance Testing

Functional Testing

Integration Testing

Black Box Testing

Performance Testing

Regression Testing

System Testing

Unit Testing
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Tree structure 
showing event
parent/child 
relationship

Event 
container 
properties

Event 
attributes

Graphical 
representation 

of model
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UI - Wind ows Internet Explorer 

1@1 http://db001d:8088/main.html?model id=16 

Fi!vorites Iools .!::!elp 

~ Assertions r Scenario Viewer 

Ji_ Naval Gunship 

t R2D_activity 

~- CD activity 

~~ GCC_ad:lv1ty 

1}- R3D_activity 

t GCC2_activity 

~- GMP _activity 

t GMCP _activity 

4- GMP2_activity 

1}- CDC_activity 

~- EOD_activity 

~- GM_activity 

Scenario Generation COMPLETED View 

@] Get More Add-ons .,.. 

X I ~ Military Symbols I ~ US Airways I Airl ... 1 

ROOT R20_activity: {* < 1> R20_displayNewTarget *}; 
ROOT CO_activity: {* <1> CO_spotNewTarget *}; 
ROOT GCC_activity : { * <0-1/0.2,0.8> GCC_setTarget *}; 
ROOT R30_activity: {* <0-1/0.28,0.72> R30_setTarget *}; 
ROOT GCC2_activity: {* <0-1/0.44128,0.SS872> GCC_openFire *} ; 
ROOT GMP _activity: {* <0-1/0.4S24S4,0.S47S46> GMP _answe rRequest_GCC_openFire *}; 
ROOT GMCP _activity: {* <0-1/0.45793,0.54207> GMCP _answerFireRequest *}; 
ROOT GMP2_activity: {* <0-1/0.4633S1,0.S36649> GMP _answerRequest_GMCP _ossOata *}; 
ROOT COC_activity: {* <0-1/0.490183,0.S09817> COC_answerRequest_GMP_ossOata *}; 
ROOT EOO_activity: {* <0- 1/0.49S281,0.S04719> EOO_answerRequest_COC_ossOata *}; 
ROOT GM_activity: { * <0-1/0.SOS013,0.494987> GM_answer_GMCP _openFireCommand *}; 

E1: ( GCC_targetNotSet CO_targetlost ); 
B1: ( CO_request_GCC_openFire CO_wait_GCC_openFire ( GCC_openFirefailed I<0.2S249031177832> targetMissed 1<0.58914406084842> ta rgetHit) ); 
0 1 : ( GCC_targetSet CO_followTarget ( CO_abortTarget 1<0.8> B1) ); 
G1: ( CO_request_GCC_setTarget CO_wait_GCC_setTarget ( E1 I <0.873> 0 1 ) ); 
CO_spotNewTarget: ( R20_displayNewTarget ( CO_ignoreTarget 1<0.8> G1 ) ); 
B2: ( R30_targetNot5et GCC_targetNotSet ); 
A2: ( R30_target5et GCC_targetSet ); 
02: ( GCC_request_R30_setTarget GCC_wait_R30_setTarget ( B2 1<0.97> A2) ); 
GCC_setTarget: ( CO_request_GCC_setTarget ( GCC_targetNotSet 1<0.9> 02) ); 
R30_setTarget: ( GCC_request_R30_setTarget ( R30_targetNot5et I <0.97> R30_target5et) ); 
A3: ( GMP _open Fire failed GCC_openFiref ailed ); 
B3: ( GCC_request_GMP _open Fire GCC_wait_GMP _open Fire ( A3 I <0.2S764317S284> targetMissed I targetHit) ); 
GCC_openFire: ( CO_request_GCC_openFire ( GCC_openFirefailed 1<0.98> B3) ); 
A4: ( GMCP _openFire f ailed GMP _openFirefailed ); 
B4: ( GMCP _displayOpenFireRequest ( A4 I <0.6072398071> targetHit I <0.26024S6316> targetMissed ) ); 
GMP _answerRequest_GCC_openFire: ( GCC_request_GMP _open Fire ( GMP _openFirefailed I <0.99> B4) ); 
OS: ( GMCP _faiiReceiving_GMP _ossOata GMCP _openFirefailed ); 
AS: ( GM_openFirefailed GMCP _openfirefailed ); 
BS: ( GMCP _send_GM_openFireCommand GMCP _wa it_GM_openFireCommand (AS I <0.66S> targetHit I <0.28S> targetMissed) ); 
CS: ( GMCP _receive_GMP _ossOata BS ); 
ES: ( GMCP _ request_GMP _ossOata GMCP _wait_GMP _ossOata (OS I <0.9223662294> CS) ); 
GMCP _answerFireRequest: ( GMCP _displayOpenFireRequest ( GMCP _openFirefailed I <0 .99> ES) ); 
B6: ( GMP _faiiReceiving_COC_ossOata GMCP _faiiReceiving_GMP _ossOata ); 
A6: ( GMP _ receive_CDC_ ossData GMCP _receive_G MP _ossData ); 
C6: ( GMP _ request_COC_ossOata GMP _wait_COC_ossOata ( B6 I <0.9S089302> A6) ); 
GMP _answerRequest_GMCP _ossData: ( GMCP _request_GMP _ossData ( GMCP _failReceiving_GMP _ossData I <0 .95> C6) ); 
B7: ( CDC_faiiReceiving_EOD_ossData GMP _faiiReceiving_CDC_ossData ); 
A7: ( CDC_receive_EOD_ossData GMP _receive_CDC_ossOata ); 
C7: ( COC_request_EOO_ossOa ta COC_wait_EOO_ossOata ( B7 1<0.960498> A7) ); 



Refine your 
model when you 

learn more 
about your 

architecture.

Graphical editor 
is easy to use by 
most end users.
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Requirements Testing

Conformance Testing

Functional Testing

Integration Testing

Black Box Testing

Performance Testing

Regression Testing

System Testing

Unit Testing
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1)Event Count – Check for the existence of a 
specific system state

2)Sequence of Events – can a series of events 
happen?

3)Simultaneous Events – Can a combination of 
events happen?
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Execute all 
system tests to 

determine 
potential 

architecture 
flaws

Model Failure? 
Click on the link 
to view WHY the 

model fails
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Graphical view of 
the exact 

sequence of 
events that 
violated the 
assertion
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1. Modeling and Simulation software tool that is used to dynamically model any 
type of complex enterprise system to identify risks in system architecture.

2. Checks all possible system states within the model scope.

3. Capable of executing all types of system tests within a single model.

4. Modeling interface that allows a user to write models without having to learn a 
modeling language (tool is designed for the average user)
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